आर्यभट (४७६-५५०) प्राचीन समय के सबसे महान खगोलशास्त्रीयों और गणितज्ञों में से एक थे। विज्ञान और गणित के क्षेत्र में उनके कार्य आज भी वैज्ञानिकों को प्रेरणा देते हैं। आर्यभट्ट उन पहले व्यक्तियों में से थे जिन्होंने बीजगणित (एलजेबरा) का प्रयोग किया। आपको यह जानकार हैरानी होगी कि उन्होंने अपनी प्रसिद्ध रचना ‘आर्यभटिया’ (गणित की पुस्तक) को कविता के रूप में लिखा।
आज हम सभी इस बात को जानते हैं कि पृथ्वी गोल है और अपनी धुरी पर घूमती है और इसी कारण रात और दिन होते हैं। मध्यकाल में ‘निकोलस कॉपरनिकस’ ने यह सिद्धांत प्रतिपादित किया था पर इस वास्तविकता से बहुत कम लोग ही परिचित होगें कि ‘कॉपरनिकस’ से लगभग 1 हज़ार साल पहले ही आर्यभट्ट ने यह खोज कर ली थी कि पृथ्वी गोल है और उसकी परिधि अनुमानत: 24835 मील है। सूर्य और चन्द्र ग्रहण के हिन्दू धर्म की मान्यता को आर्यभट्ट ने ग़लत सिद्ध किया। इस महान वैज्ञानिक और गणितग्य को यह भी ज्ञात था कि चन्द्रमा और दूसरे ग्रह सूर्य की किरणों से प्रकाशमान होते हैं। आर्यभट्ट ने अपने सूत्रों से यह सिद्ध किया कि एक वर्ष में 366 दिन नहीं वरन 365.2951 दिन होते हैं।
आर्यभट का जन्म-स्थान
यद्यपि आर्यभट के जन्म के वर्ष का आर्यभटीय में स्पष्ट उल्लेख है, उनके जन्म के वास्तविक स्थान के बारे में विवाद है। कुछ मानते हैं कि वे नर्मदा और गोदावरी के मध्य स्थित क्षेत्र में पैदा हुए थे, जिसे अश्माका के रूप में जाना जाता था और वे अश्माका की पहचान मध्य भारत से करते हैं जिसमे महाराष्ट्र और मध्य प्रदेश शामिल है, हालाँकि आरंभिक बौद्ध ग्रन्थ अश्माका को दक्षिण में, दक्षिणापथ या दक्खन के रूप में वर्णित करते हैं, जबकि अन्य ग्रन्थ वर्णित करते हैं कि अश्माका के लोग अलेक्जेंडर से लड़े होंगे, इस हिसाब से अश्माका को उत्तर की तरफ और आगे होना चाहिए.
अनुमानो के आधार पर उनकी जन्म तिथि 13 अप्रैल 476 और मृत्यु 550 में मानी जाती है। इसी के आधार पर प्रसिद्ध अर्न्तराष्ट्रीय संस्था यूनेस्को ने आर्यभट्ट की 1500वीं जयंती मनाई थी।
एक ताजा अध्ययन के अनुसार आर्यभट , केरल के चाम्रवत्तम (१०उत्तर५१, ७५पूर्व४५) के निवासी थे। अध्ययन के अनुसार अस्मका एक जैन प्रदेश था जो की श्रवनबेलगोल के चारों तरफ फैला हुआ था और यहाँ के पत्थर के खम्बों के कारण इसका नाम अस्मका पड़ा। चाम्रवत्तम इस जैन बस्ती का हिस्सा था, इसका प्रमाण है भारतापुझा नदी जिसका नाम जैनों के पौराणिक राजा भारता के नाम पर रखा गया है। आर्यभट्ट ने भी युगों को परिभाषित करते वक्त राजा भारता का जिक्र किया है- दसगीतिका के पांचवें छंद में राजा भारत के समय तक बीत चुके काल का वर्णन आता है। उन दिनों में कुसुमपुरा में एक प्रसिद्ध विश्वविद्यालय था जहाँ जैनों का निर्णायक प्रभाव था और आर्यभट्ट का काम इस प्रकार कुसुमपुरा पहुँच सका और उसे पसंद भी किया गया।
हालाँकि ये बात काफी हद तक निश्चित है की वे किसी न किसी समय कुसुमपुरा उच्च शिक्षा के लिए गए थे और कुछ समय के लिए वहां रहे भी थे। भास्कर I (६२९ ई.) ने कुसुमपुरा की पहचान पाटलिपुत्र (आधुनिक पटना) के रूप में की है। गुप्त साम्राज्य के अन्तिम दिनों में वे वहां रहा करते थे। यह वह समय था जिसे भारत के स्वर्णिम युग के रूप में जाना जाता है, विष्णुगुप्त के पूर्व बुद्धगुप्त और कुछ छोटे राजाओं के साम्राज्य के दौरान उत्तर पूर्व में हूणों का आक्रमण शुरू हो चुका था।
आर्यभट्ट अपनी खगोलीय प्रणालियों के लिए सन्दर्भ के रूप में श्रीलंका का उपयोग करते थे और आर्यभटीय में अनेक अवसरों पर श्रीलंका का उल्लेख किया है।
कृतियाँ
आर्यभट द्वारा रचित तीन ग्रंथों की जानकारी आज भी उपलब्ध है। दशगीतिका, आर्यभटीय और तंत्र। लेकिन जानकारों के अनुसार उन्होने और एक ग्रंथ लिखा था- 'आर्यभट्ट सिद्धांत'। इस समय उसके केवल ३४ श्लोक ही उपलब्ध हैं। उनके इस ग्रंथ का सातवे शतक में व्यापक उपयोग होता था। लेकिन इतना उपयोगी ग्रंथ लुप्त कैसे हो गया इस विषय में कोई निश्चित जानकारी नहीं मिलती।
उन्होंने आर्यभटीय नामक महत्वपूर्ण ज्योतिष ग्रन्थ लिखा, जिसमें वर्गमूल, घनमूल, समान्तर श्रेणी तथा विभिन्न प्रकार के समीकरणों का वर्णन है। उन्होंने अपने आर्यभट्टीय नामक ग्रन्थ में कुल ३ पृष्ठों के समा सकने वाले ३३ श्लोकों में गणितविषयक सिद्धान्त तथा ५ पृष्ठों में ७५ श्लोकों में खगोल-विज्ञान विषयक सिद्धान्त तथा इसके लिये यन्त्रों का भी निरूपण किया। आर्यभट्ट ने अपने इस छोटे से ग्रन्थ में अपने से पूर्ववर्ती तथा पश्चाद्वर्ती देश के तथा विदेश के सिद्धान्तों के लिये भी क्रान्तिकारी अवधारणाएँ उपस्थित की।
उनकी प्रमुख कृति, आर्यभटीय, गणित और खगोल विज्ञान का एक संग्रह है, जिसे भारतीय गणितीय साहित्य में बड़े पैमाने पर उद्धत किया गया है और जो आधुनिक समय में भी अस्तित्व में है। आर्यभटीय के गणितीय भाग में अंकगणित, बीजगणित, सरल त्रिकोणमिति और गोलीय त्रिकोणमिति शामिल हैं। इसमे सतत भिन्न (कँटीन्यूड फ़्रेक्शन्स), द्विघात समीकरण (क्वड्रेटिक इक्वेशंस), घात श्रृंखला के योग (सम्स ऑफ पावर सीरीज़) और ज्याओं की एक तालिका (Table of Sines) शामिल हैं।
आर्य-सिद्धांत, खगोलीय गणनाओं पर एक कार्य है जो अब लुप्त हो चुका है, इसकी जानकारी हमें आर्यभट्ट के समकालीन वराहमिहिर के लेखनों से प्राप्त होती है, साथ ही साथ बाद के गणितज्ञों और टिप्पणीकारों के द्वारा भी मिलती है जिनमें शामिल हैं ब्रह्मगुप्त और भास्कर I. ऐसा प्रतीत होता है कि ये कार्य पुराने सूर्य सिद्धांत पर आधारित है और आर्यभटीय के सूर्योदय की अपेक्षा इसमें मध्यरात्रि-दिवस-गणना का उपयोग किया गया है। इसमे अनेक खगोलीय उपकरणों का वर्णन शामिल है, जैसे कि नोमोन(शंकु-यन्त्र), एक परछाई यन्त्र (छाया-यन्त्र), संभवतः कोण मापी उपकरण, अर्धवृत्ताकार और वृत्ताकार (धनुर-यन्त्र / चक्र-यन्त्र), एक बेलनाकार छड़ी यस्ती-यन्त्र, एक छत्र-आकर का उपकरण जिसे छत्र- यन्त्र कहा गया है और कम से कम दो प्रकार की जल घड़ियाँ- धनुषाकार और बेलनाकार.
एक तीसरा ग्रन्थ जो अरबी अनुवाद के रूप में अस्तित्व में है, अल न्त्फ़ या अल नन्फ़ है, आर्यभट्ट के एक अनुवाद के रूप में दावा प्रस्तुत करता है, परन्तु इसका संस्कृत नाम अज्ञात है। संभवतः ९ वी सदी के अभिलेखन में, यह फारसी विद्वान और भारतीय इतिहासकार अबू रेहान अल-बिरूनी द्वारा उल्लेखित किया गया है।
आर्यभटीय
मुख्य लेख आर्यभटीय
आर्यभट्ट के कार्य के प्रत्यक्ष विवरण सिर्फ़ आर्यभटीय से ही ज्ञात हैं। आर्यभटीय नाम बाद के टिप्पणीकारों द्वारा दिया गया है, आर्यभट्ट ने स्वयं इसे नाम नही दिया होगा; यह उल्लेख उनके शिष्य भास्कर प्रथम नेअश्मकतंत्र या अश्माका के लेखों में किया है। इसे कभी कभी आर्य-शत-अष्ट (अर्थात आर्याभात्त के १०८)- जो की उनके पाठ में छंदों कि संख्या है- के नाम से भी जाना जाता है। यह सूत्र साहित्य के समान बहुत ही संक्षिप्त शैली में लिखा गया है, जहाँ प्रत्येक पंक्ति एक जटिल प्रणाली को याद करने के लिए सहायता करती है। इस प्रकार, अर्थ की व्याख्या टिप्पणीकारों की वजह से है। समूचे ग्रंथ में १०८ छंद है, साथ ही परिचयात्मक १३ अतिरिक्त हैं, इस पूरे को चार पदों अथवा अध्यायों में विभाजित किया गया है :
- (1) गीतिकपाद : (१३ छंद) समय की बड़ी इकाइयाँ - कल्प, मन्वन्तर, युग, जो प्रारंभिक ग्रंथों से अलग एक ब्रह्माण्ड विज्ञान प्रस्तुत करते हैं जैसे कि लगध का वेदांग ज्योतिष, (पहली सदीइसवी पूर्वइनमे जीवाओं (साइन) की तालिका ज्या भी शामिल है जो एक एकल छंद में प्रस्तुत है। एक महायुग के दौरान, ग्रहों के परिभ्रमण के लिए ४। ३२ मिलियन वर्षों की संख्या दी गयी है।
- (२) गणितपाद (३३ छंद) में क्षेत्रमिति (क्षेत्र व्यवहार), गणित और ज्यामितिक प्रगति, शंकु/ छायाएँ (शंकु -छाया), सरल, द्विघात, युगपत और अनिश्चित समीकरण (कुट्टक) का समावेश है।
- (३) कालक्रियापाद (२५ छंद) : समय की विभिन्न इकाइयाँ और किसी दिए गए दिन के लिए ग्रहों की स्थिति का निर्धारण करने की विधि। अधिक मास की गणना के विषय में (अधिकमास), क्षय-तिथियां। सप्ताह के दिनों के नामों के साथ, एक सात दिन का सप्ताह प्रस्तुत करते हैं।
- (४) गोलपाद (५० छंद): आकाशीय क्षेत्र के ज्यामितिक /त्रिकोणमितीय पहलू, क्रांतिवृत्त, आकाशीय भूमध्य रेखा, आसंथि, पृथ्वी के आकार, दिन और रात के कारण, क्षितिज पर राशिचक्रीय संकेतों का बढ़ना आदि की विशेषताएं।
इसके अतिरिक्त, कुछ संस्करणों अंत में कृतियों की प्रशंसा आदि करने के लिए कुछ पुश्पिकाएं भी जोड़ते हैं।
आर्यभटीय ने गणित और खगोल विज्ञान में पद्य रूप में, कुछ नवीनताएँ प्रस्तुत की, जो अनेक सदियों तक प्रभावशाली रही। ग्रंथ की संक्षिप्तता की चरम सीमा का वर्णन उनके शिष्य भास्कर प्रथम (भाष्य , ६०० और) द्वारा अपनी समीक्षाओं में किया गया है और अपने आर्यभटीय भाष्य (१४६५) में नीलकंठ सोमयाजी द्वारा।
आर्यभट का योगदान
भारतके इतिहास में जिसे 'गुप्तकाल' या 'सुवर्णयुग' के नाम से जाना जाता है, उस समय भारत ने साहित्य, कला और विज्ञान क्षेत्रों में अभूतपूर्व प्रगति की। उस समय मगध स्थित नालन्दा विश्वविद्यालय ज्ञानदान का प्रमुख और प्रसिद्ध केंद्र था। देश विदेश से विद्यार्थी ज्ञानार्जन के लिए यहाँ आते थे। वहाँ खगोलशास्त्र के अध्ययन के लिए एक विशेष विभाग था। एक प्राचीन श्लोक के अनुसार आर्यभट नालंदा विश्वविद्यालय के कुलपति भी थे।
आर्यभट का भारत और विश्व के ज्योतिष सिद्धान्त पर बहुत प्रभाव रहा है। भारत में सबसे अधिक प्रभाव केरल प्रदेश की ज्योतिष परम्परा पर रहा। आर्यभट भारतीय गणितज्ञों में सबसे महत्वपूर्ण स्थान रखते हैं। इन्होंने 120 आर्याछंदों में ज्योतिष शास्त्र के सिद्धांत और उससे संबंधित गणित को सूत्ररूप में अपने आर्यभटीय ग्रंथ में लिखा है।
उन्होंने एक ओर गणित में पूर्ववर्ती आर्किमिडीज़ से भी अधिक सही तथा सुनिश्चित पाई के मान को निरूपित किया[क] तो दूसरी ओर खगोलविज्ञान में सबसे पहली बार उदाहरण के साथ यह घोषित किया गया कि स्वयंपृथ्वी अपनी धुरी पर घूमती है।[ख]
आर्यभट ने ज्योतिषशास्त्र के आजकल के उन्नत साधनों के बिना जो खोज की थी, उनकी महत्ता है। कोपर्निकस (1473 से 1543 इ.) ने जो खोज की थी उसकी खोज आर्यभट हजार वर्ष पहले कर चुके थे। "गोलपाद" में आर्यभट ने लिखा है "नाव में बैठा हुआ मनुष्य जब प्रवाह के साथ आगे बढ़ता है, तब वह समझता है कि अचर वृक्ष, पाषाण, पर्वत आदि पदार्थ उल्टी गति से जा रहे हैं। उसी प्रकार गतिमान पृथ्वी पर से स्थिर नक्षत्र भी उलटी गति से जाते हुए दिखाई देते हैं।" इस प्रकार आर्यभट ने सर्वप्रथम यह सिद्ध किया कि पृथ्वी अपने अक्ष पर घूमती है। इन्होंने सतयुग, त्रेता, द्वापर और कलियुग को समान माना है। इनके अनुसार एक कल्प में 14 मन्वंतर और एक मन्वंतर में 72 महायुग (चतुर्युग) तथा एक चतुर्युग में सतयुग, द्वापर, त्रेता और कलियुग को समान माना है।
आर्यभट के अनुसार किसी वृत्त की परिधि और व्यास का संबंध 62,832 : 20,000 आता है जो चार दशमलव स्थान तक शुद्ध है।
आर्यभट ने बड़ी-बड़ी संख्याओं को अक्षरों के समूह से निरूपित करने कीत्यन्त वैज्ञानिक विधि का प्रयोग किया है।
गणित
स्थानीय मान प्रणाली और शून्य
स्थान-मूल्य अंक प्रणाली, जिसे सर्वप्रथम तीसरी सदी की बख्शाली पाण्डुलिपि में देखा गया, उनके कार्यों में स्पष्ट रूप से विद्यमान थी।[6] उन्होंने निश्चित रूप से प्रतीक का उपयोग नहीं किया, परन्तु फ्रांसीसी गणितज्ञजार्ज इफ्रह की दलील है कि रिक्त गुणांक के साथ, दस की घात के लिए एक स्थान धारक के रूप में शून्य का ज्ञान आर्यभट्ट के स्थान-मूल्य अंक प्रणाली में निहित था।[7]
हालांकि, आर्यभट्ट ने ब्राह्मी अंकों का प्रयोग नहीं किया था; वैदिक काल से चली आ रही संस्कृत परंपरा को जारी रखते हुए उन्होंने संख्या को निरूपित करने के लिए वर्णमाला के अक्षरों का उपयोग किया, मात्राओं (जैसे ज्याओं की तालिका) को स्मरक के रूप में व्यक्त करना। [8]
अपरिमेय (इर्रेशनल) के रूप में पाई
आर्यभट्ट ने पाई () के सन्निकटन पर कार्य किया और शायद उन्हें इस बात का ज्ञान हो गया था कि पाई इर्रेशनल है। आर्यभटीयम (गणितपाद) के दूसरे भाग वह लिखते हैं:
- चतुराधिकं शतमष्टगुणं द्वाषष्टिस्तथा सहस्त्राणाम्।
- अयुतद्वयस्य विष्कम्भस्य आसन्नौ वृत्तपरिणाहः॥
- १०० में चार जोड़ें, आठ से गुणा करें और फिर ६२००० जोड़ें। इस नियम से २०००० परिधि के एक वृत्त का व्यास ज्ञात किया जा सकता है।
- (१०० + ४) * ८ + ६२०००/२०००० = ३.१४१६
इसके अनुसार व्यास और परिधि का अनुपात ((४ + १००) × ८ + ६२०००) / २०००० = ३.१४१६ है, जो पाँच महत्वपूर्ण आंकडों तक बिलकुल सटीक है।
आर्यभट्ट ने आसन्न (निकट पहुंचना), पिछले शब्द के ठीक पहले आने वाला, शब्द की व्याख्या की व्याख्या करते हुए कहा है कि यह न केवल एक सन्निकटन है, वरन यह कि मूल्य अतुलनीय (या इर्रेशनल) है। यदि यह सही है, तो यह एक अत्यन्त परिष्कृत दृष्टिकोण है, क्योंकि यूरोप में पाइ की तर्कहीनता का सिद्धांत लैम्बर्ट द्वारा केवल १७६१ में ही सिद्ध हो पाया था।[9]
आर्यभटीय के अरबी में अनुवाद के पश्चात् (पूर्व.८२० ई.) बीजगणित पर अल ख्वारिज्मी की पुस्तक में इस सन्निकटन का उल्लेख किया गया था।[1]
क्षेत्रमिति और त्रिकोणमिति
- त्रिभुजस्य फलाशारिरम समदलाकोटि भुजर्धसमवर्गः
इसका अनुवाद है: एक त्रिकोण के लिए, अर्ध-पक्ष के साथ लम्ब का परिणाम क्षेत्रफल है।[10]
आर्यभट्ट ने अपने काम में द्विज्या (साइन) के विषय में चर्चा की है और उसको नाम दिया है अर्ध-ज्या इसका शाब्दिक अर्थ है "अर्ध-तंत्री" । आसानी की वजह से लोगों ने इसे ज्या कहना शुरू कर दिया। जब अरबी लेखकों द्वारा उनके काम का संस्कृत से अरबी में अनुवाद किया गया, तो उन्होंने इसको जिबा कहा (ध्वन्यात्मक समानता के कारणवश) । चूँकि, अरबी लेखन में, स्वरों का इस्तेमाल बहुत कम होता है, इसलिए इसका और संक्षिप्त नाम पड़ गया ज्ब । जब बाद के लेखकों को ये समझ में आया की ज्ब जिबा का ही संक्षिप्त रूप है, तो उन्होंने वापिस जिबा का इस्तेमाल करना शुरू कर दिया। जिबा का अर्थ है "खोह" या "खाई" (अरबी भाषा में जिबा का एक तकनीकी शब्द के आलावा कोई अर्थ नहीं है)। पश्चात् में बारहवीं सदी में, जब क्रीमोना के घेरार्दो ने इन लेखनों का अरबी से लैटिन भाषा में अनुवाद किया, तब उन्होंने अरबी जिबा की जगह उसके लेटिन समकक्ष साइनस को डाल दिया, जिसका शाब्दिक अर्थ "खोह" या खाई" ही है। और उसके बाद अंग्रेजी में, साइनस ही साइन बन गया।[11]
अनिश्चित समीकरण
प्राचीन कल से भारतीय गणितज्ञों की विशेष रूचि की एक समस्या रही है उन समीकरणों के पूर्णांक हल ज्ञात करना जो ax + b = cy स्वरुप में होती है, एक विषय जिसे वर्तमान समय में डायोफैंटाइन समीकरण के रूप में जाना जाता है। यहाँ आर्यभटीय पर भास्कर की व्याख्या से एक उदाहरण देते हैं:
- वह संख्या ज्ञात करो जिसे ८ से विभाजित करने पर शेषफल के रूप में ५ बचता है, ९ से विभाजित करने पर शेषफल के रूप में ४ बचता है, ७ से विभाजित करने पर शेषफल के रूप में १ बचता है।
अर्थात, बताएं N = 8x+ 5 = 9y +4 = 7z +1. इससे N के लिए सबसे छोटा मान ८५ निकलता है। सामान्य तौर पर, डायोफैंटाइन समीकरण कठिनता के लिए बदनाम थे। इस तरह के समीकरणों की व्यापक रूप से चर्चा प्राचीन वैदिक ग्रन्थ सुल्ब सूत्र में है, जिसके अधिक प्राचीन भाग ८०० ई.पु. तक पुराने हो सकते हैं। ऐसी समस्याओं के हल के लिए आर्यभट्ट की विधि को कुट्टक विधि कहा गया है। kuṭṭaka कूटटक का अर्थ है पीसना, अर्थात छोटे छोटे टुकडों में तोड़ना और इस विधि में छोटी संख्याओं के रूप में मूल खंडों को लिखने के लिए एक पुनरावर्ती कलनविधि का समावेश था। आज यह कलनविधि, ६२१ इसवी पश्चात में भास्कर की व्याख्या के अनुसार, पहले क्रम के डायोफैंटाइन समीकरणों को हल करने के लिए मानक पद्धति है, और इसे अक्सर आर्यभट्ट एल्गोरिद्म के रूप में जाना जाता है।[12] डायोफैंटाइन समीकरणों का इस्तेमाल क्रिप्टोलौजीमें होता है और आरएसए सम्मलेन, २००६ ने अपना ध्यान कुट्टक विधि और सुल्वसूत्र के पूर्व के कार्यों पर केन्द्रित किया।
बीजगणित
और
खगोल विज्ञान
आर्यभट्ट की खगोल विज्ञान प्रणाली औदायक प्रणाली कहलाती थी, (श्रीलंका, भूमध्य रेखा पर उदय, भोर होने से दिनों की शुरुआत होती थी।) खगोल विज्ञान पर उनके बाद के लेख, जो सतही तौर पर एक द्वितीय मॉडल (अर्ध-रात्रिका, मध्यरात्रि), प्रस्तावित करते हैं, खो गए हैं, परन्तु इन्हे आंशिक रूप से ब्रह्मगुप्तके खानदाखअद्याका में हुई चर्चाओं से पुनः निर्मित किया जा सकता है। कुछ ग्रंथों में वे पृथ्वी के घूर्णन को आकाश की आभासी गति का कारण बताते हैं।
सौर प्रणाली की गतियाँ
प्रतीत होता है की आर्यभट्ट यह मानते थे कि पृथ्वी अपनी धुरी की परिक्रमा करती है। यह श्रीलंका को सन्दर्भित एक कथन से ज्ञात होता है, जो तारों की गति का पृथ्वी के घूर्णन से उत्पन्न आपेक्षिक गति के रूप में वर्णन करता है।
- जैसे एक नाव में बैठा आदमी आगे बढ़ते हुए स्थिर वस्तुओं को पीछे की दिशा में जाते देखता है, बिल्कुल उसी तरह श्रीलंका में (अर्थात भूमध्य रेखा पर) लोगों द्वारा स्थिर तारों को ठीक पश्चिम में जाते हुए देखा जाता है। [अचलानी भानी समांपाशाचिमागानी - गोलापदा .9]
परन्तु अगला छंद तारों और ग्रहों की गति को वास्तविक गति के रूप में वर्णित करता है: "उनके उदय और अस्त होने का कारण इस तथ्य की वजह से है कि प्रोवेक्टर हवा द्वारा संचालित गृह और एस्टेरिस्म्स चक्र श्रीलंका में निरंतर पश्चिम की तरफ चलायमान रहते हैं।
लंका (श्रीलंका) यहाँ भूमध्य रेखा पर एक सन्दर्भ बिन्दु है, जिसे खगोलीय गणना के लिए मध्याह्न रेखा के सन्दर्भ में समान मान के रूप में ले लिया गया था।
आर्यभट्ट ने सौर मंडल के एक भूकेंद्रीय मॉडल का वर्णन किया है, जिसमे सूर्य और चन्द्रमा गृहचक्र द्वारा गति करते हैं, जो कि परिक्रमा करता है पृथ्वी की. इस मॉडल में, जो पाया जाता है पितामहासिद्धान्त (ई. 425), प्रत्येक ग्रहों की गति दो ग्रिह्चक्रों द्वारा नियंत्रित है, एक छोटा मंदा (धीमा) गृहचक्र और एक बड़ा शीघ्र (तेज) गृहचक्र. [14] पृथ्वी से दूरी के अनुसार ग्रहों का क्रम इस प्रकार है : चंद्रमा, बुध, शुक्र, सूरज, मंगल,बृहस्पति, शनि और नक्षत्र[1]
ग्रहों की स्थिती और अवधी की गणना समान रूप से गति करते हुए बिन्दुओं से सापेक्ष के रूप में की गयी थी, जो बुध और शुक्र के मामले में, जो पृथ्वी के चारों ओर औसत सूर्य के समान गति से घूमते हैं और मंगल, बृहस्पति और शनि के मामले में, जो राशिचक्र में पृथ्वी के चारों ओर अपनी विशिष्ट गति से गति करते हैं। खगोल विज्ञान के अधिकांश इतिहासकारों के अनुसार यह द्वि गृहचक्र वाला मॉडल प्री-टोलेमिक ग्रीक खगोल विज्ञानके तत्वों को प्रदर्शित करता है।[15] आर्यभट्ट के मॉडल के एक अन्य तत्व सिघ्रोका, सूर्य के संबंध में बुनियादी ग्रहों की अवधि, को कुछ इतिहासकारों द्वारा एक अंतर्निहित सूर्य केन्द्रित मॉडल के चिन्ह के रूप में देखा जाता है।[16]
ग्रहण
उन्होंने कहा कि चंद्रमा और ग्रह सूर्य के परावर्तित प्रकाश से चमकते हैं। मौजूदा ब्रह्माण्डविज्ञान से अलग, जिसमे ग्रहणों का कारक छद्म ग्रह निस्पंद बिन्दु राहू और केतु थे, उन्होंने ग्रहणों को पृथ्वी द्वारा डाली जाने वाली और इस पर गिरने वाली छाया से सम्बद्ध बताया.इस प्रकार चंद्रगहण तब होता है जब चाँद पृथ्वी की छाया में प्रवेश करता है (छंद गोला. ३७) और पृथ्वी की इस छाया के आकार और विस्तार की विस्तार से चर्चा की (छंद गोला. ३८-४८) और फिर ग्रहण के दौरान ग्रहण वाले भाग का आकार और इसकी गणना.बाद के भारतीय खगोलविदों ने इन गणनाओं में सुधार किया, लेकिन आर्यभट्ट की विधियों ने प्रमुख सार प्रदान किया था। यह गणनात्मक मिसाल इतनी सटीक थी कि 18 वीं सदी के वैज्ञानिक गुइलौम ले जेंटिल ने, पांडिचेरी की अपनी यात्रा के दौरान, पाया कि भारतीयों की गणना के अनुसार १७६५-०८-३० के चंद्रग्रहण की अवधि ४१ सेकंड कम थी, जबकि उसके चार्ट (द्वारा, टोबिअस मेयर, १७५२) ६८ सेकंड अधिक दर्शाते थे।[1]
आर्यभट्ट कि गणना के अनुसार पृथ्वी की परिधि ३९,९६८.०५८२ किलोमीटर है, जो इसके वास्तविक मान ४०,०७५.०१६७ किलोमीटर से केवल ०.२% कम है। यह सन्निकटन यूनानी गणितज्ञ, एराटोसथेंनस की संगणना के ऊपर एक उल्लेखनीय सुधार था,२०० ई.) जिनका गणना का आधुनिक इकाइयों में तो पता नहीं है, परन्तु उनके अनुमान में लगभग ५-१०% की एक त्रुटि अवश्य थी।[17]
नक्षत्रों के आवर्तकाल
समय की आधुनिक अंग्रेजी इकाइयों में जोड़ा जाये तो, आर्यभट्ट की गणना के अनुसार पृथ्वी का आवर्तकाल (स्थिर तारों के सन्दर्भ में पृथ्वी की अवधि)) २३ घंटे ५६ मिनट और ४.१ सेकंड थी; आधुनिक समय २३:५६:४.०९१ है। इसी प्रकार, उनके हिसाब से पृथ्वी के वर्ष की अवधि ३६५ दिन ६ घंटे १२ मिनट ३० सेकंड, आधुनिक समय की गणना के अनुसार इसमें ३ मिनट २० सेकंड की त्रुटि है। नक्षत्र समय की धारण उस समय की अधिकतर अन्य खगोलीय प्रणालियों में ज्ञात थी, परन्तु संभवतः यह संगणना उस समय के हिसाब से सर्वाधिक शुद्ध थी।
सूर्य केंद्रीयता
आर्यभट्ट का दावा था कि पृथ्वी अपनी ही धुरी पर घूमती है और उनके ग्रह सम्बन्धी गृहचक्र मॉडलों के कुछ तत्व उसी गति से घूमते हैं जिस गति से सूर्य के चारों ओर ग्रह घूमते हैं। इस प्रकार ऐसा सुझाव दिया जाता है कि आर्यभट्ट की संगणनाएँ अन्तर्निहित सूर्य केन्द्रित मॉडल पर आधारित थीं, जिसमे गृह सूर्य का चक्कर लगाते हैं।[18][19] एक समीक्षा में इस सूर्य केन्द्रित व्याख्या का विस्तृत खंडन है। यह समीक्षा बी.एल. वान डर वार्डेन की एक किताब का वर्णन इस प्रकार करती है "यह किताब भारतीय गृह सिद्धांत के विषय में अज्ञात है और यह आर्यभट्ट के प्रत्येक शब्द का सीधे तौर पर विरोध करता है,".[20] हालाँकि कुछ लोग यह स्वीकार करते हैं की आर्यभट्ट की प्रणाली पूर्व के एक सूर्य केन्द्रित मॉडल से उपजी थी जिसका ज्ञान उनको नहीं था।[21] यह भी दावा किया गया है कि वे ग्रहों के मार्ग को अंडाकार मानते थे, हालाँकि इसके लिए कोई भी प्राथमिक साक्ष्य प्रस्तुत नहीं किया गया है।[22] हालाँकि सामोस के एरिस्तार्चुस (तीसरी शताब्दी ई.पू.) और कभी कभार पोन्टस के हेराक्लिड्स(चौथी शताब्दी ई.पू.) को सूर्य केन्द्रित सिद्धांत की जानकारी होने का श्रेय दिया जाता है, प्राचीन भारत में ज्ञात ग्रीक खगोलशास्त्र(पौलिसा सिद्धांत - संभवतः अलेक्ज़न्द्रिया के किसी पॉल द्वारा) सूर्य केन्द्रित सिद्धांत के विषय में कोई चर्चा नहीं करता है।
0 टिप्पणियाँ:
एक टिप्पणी भेजें
आपकी टिप्पणियाँ एवं प्रतिक्रियाएँ हमारा उत्साह बढाती हैं और हमें बेहतर होने में मदद करती हैं !! अपनी प्रतिक्रियाएँ हमें बेझिझक दें !!